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A B S T R A C T

The patterning of cytosolic Ca2+ signals underlies their ubiquitous ability to specifically regulate numerous
cellular processes. Advances in fluorescence microscopy have made it possible to image these signals with un-
precedented temporal and spatial resolution. However, this is a double-edged sword, as the resulting enormous
data sets necessitate development of software to automate image processing and analysis. Here, we describe
Flika, an open source, graphical user interface program written in the Python environment that contains a suite
of built-in image processing tools to enable intuitive visualization of image data and analysis. We illustrate the
utility and power of Flika by three applications for studying cellular Ca2+ signaling: a script for measuring
single-cell global Ca2+ signals; a plugin for the detection, localization and analysis of subcellular Ca2+ puffs; and
a script that implements a novel approach for fluctuation analysis of transient, local Ca2+ fluorescence signals.
This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques
Haiech.

1. Introduction

Cytosolic Ca2+ signals are utilized by all cells of the body to reg-
ulate cellular processes as diverse as gene transcription, secretion, mi-
tochondrial energetics, electrical excitability and fertilization; indeed,
often more than one process in the same cell [1,2]. The versatility and
specificity of ubiquitous cellular Ca2+ signals derives from their loca-
lization in both space and time — a consequence of the rapid release of
Ca2+ ions into the cytosol through channels in the plasma and en-
doplasmic reticulum (ER) membranes together with the restricted dif-
fusion of Ca2+ by stationary cytosolic buffers [3]. Following the de-
velopment of highly sensitive fluorescent indicator dyes [4,5] it became
possible to image subcellular Ca2+ signals with high spatial and tem-
poral resolution, leading to the initial discovery of local Ca2+ puffs
originating through inositol trisphosphate receptors (IP3Rs) in the ER
membrane [6–8], followed by numerous reports of other local Ca2+

signals in diverse cell types, notably including sparks arising from
ryanodine receptors in muscle [9,10].

Progressive technological advances in total internal reflection

fluorescence (TIRF) microscopy and improved capabilities of electron-
multiplied CCD (EMCCD) and scientific CMOS (sCMOS) cameras have
enabled high-resolution imaging of Ca2+ signals in two spatial di-
mensions [11,12]. The evanescent field created by TIRF microscopy is
used to excite the fluorescence of cytosolic Ca2+ indicators within a
region limited to ~100 nm deep adjacent to the cell membrane, pro-
viding an optical ‘section’ appreciably narrower than is possible by
confocal microscopy. Moreover, this sheet is continuously illuminated,
as opposed to the sequential scanning of a confocal spot, so that large
areas of a cell can be simultaneously imaged by a camera. Currently
available cameras enable imaging with 128× 128 or higher pixel
spatial resolution at rates of> 1000 frames s−1. This approach yields
vastly more information (ca. 1 GB or more per minute) than previous
techniques such as linescan imaging [13].

In the face of such large data sets, manual analysis is cumbersome,
time consuming, and potentially biased and error prone. As a con-
sequence, the need for automated image analysis algorithms that gen-
erate quantitative information has grown in recent years. This has re-
sulted in the proliferation of algorithms and software designed for
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particular uses; often so specific that their utility is limited to individual
labs. Whereas many of these algorithms could be modified to solve a
wide range of problems, often the steps of the algorithm remain hidden
from the user, and the published details include mathematical steps that
are difficult for the uninitiated to intuit. Visualization of an algorithmic
step can lead to an instant and intuitive understanding of the operation,
compared to difficult mathematical and verbal explanations. A picture
or movie is worth a thousand equations.

There are three major programming environments currently pop-
ular for writing and sharing custom algorithms for processing and
analysis of biological image data: MATLAB, ImageJ, and Python.
Although MATLAB is easy to set up, it is not open source, nor is it
conducive to writing large custom graphical user interface (GUI)-based
programs. ImageJ is based on the Java programming language, which is
not as easy for beginners as compared to Python. Python is a stable,
popular programming language with many freely available open source
software libraries for data and image analysis. Although many excellent
libraries exist in Python, until now using them has required an inter-
mediate level of programming experience.

Here, we describe Flika, a program that combines Python's many
powerful existing image analysis libraries with a user-friendly graphical
interface that requires no programming background to use. Flika con-
tains a suite of built-in image processing tools that enable rapid, easy
visualization of image data for speeding up image analysis. We illus-
trate the utility and power of Flika for studying cellular Ca2+ signaling
in three applications: 1) the identification of individual cells and the
processing of image stacks for measuring global (whole-cell) Ca2+

signals; 2) the detection, localization and analysis of subcellular (local)
Ca2+ puffs; and, 3) a novel approach for fluctuation analysis of tran-
sient local Ca2+ fluorescence signals occurring during rapidly rising
global Ca2+ levels.

2. Flika

2.1. Architecture and image import

Flika is a standalone program that runs on any platform capable of
running Python (including Windows, macOS, and Linux). All of the
code is open source under the MIT license and is hosted on the popular
open source software sharing website GitHub (https://github.com/
flika-org/flika). Once downloaded, Flika can run as a standalone pro-
gram, can be launched from within a Python console (e.g. Jupyter
notebook, IPython), or from within an integrated development en-
vironment (e.g. Spyder, PyCharm). When Flika is launched its main GUI
is displayed, with drop-down menus bringing up options for file im-
port/export and image processing (Fig. 1A–C). Images or image se-
quences (movies) can be opened: Flika supports .tif, .nd2, and .stk
formats, and can easily be extended to include support for other for-
mats. Pixel values are imported and natively stored as 64 bit floating
point numbers. Thus, operations such as forming ratio images relative
to baseline fluorescence that result in small, non-integer results are
readily accomplished, without needing to scale up the values as re-
quired for software packages that handle only integer image data.
Options are also available to change the data type of the pixel values to
unsigned (uint) and signed (int) integers, ranging from 8 to 64 bits, to
facilitate interactions with other software packages or to reduce com-
putational overhead.

2.2. Image and stack processing

The image ‘window’ (Fig. 1D) is a central feature of Flika; opera-
tions are performed on windows to create new windows or extract data
from windows. The header of each window displays both the title of the
original source file, and a cumulative list of functions that have sub-
sequently been applied. To the right of each window a histogram shows
pixel intensities together with a lookup table that can be used to adjust

brightness and contrast, and to apply color maps. For movies, the
bottom of the window shows a timeline that allows scrolling through a
movie via the mouse or arrow keys (side-to-side arrows scroll slower,
up-down arrows scroll faster). Flika has a large set of built-in operations
that can be performed on windows in order to generate new windows.
As open source software, additional operations continue to be added to
Flika. Examples are shown in the drop-down menus in Fig. 1, illus-
trating functions applied to manipulate image stacks (Fig. 1A); math-
ematical functions applied to pixel values (Fig. 1B); and spatial and
temporal filtering functions (Fig. 1C). For operations that can be run in
parallel, Flika distributes the workload among multiple cores of the
computer, dramatically decreasing processing time. Examples of com-
monly used operators include Gaussian blur, temporal Butterworth
filter, ratio by baseline (to generate F/F0 images), and binary threshold.

Each operation generates a new window that can be further oper-
ated on in turn. These operations are typically performed in a sequence
that will yield a processed image from which data can be readily ex-
tracted. For example, if a researcher is trying to detect signals that exist
in a particular spatial-temporal frequency range, it takes mere seconds
to apply a spatial filter, apply a temporal filter, apply a threshold to
generate a binary image and, at the same time, visualize every inter-
mediate step to ensure the parameters are optimized for the signal of
interest. Various types of regions of interest (ROIs; square, arbitrary
outline) can be drawn on windows, and can then be used, for example,
to plot the average intensity of pixels inside the ROI over time (Fig. 1E).
ROIs can be moved and the average intensity trace updates in real time
(> 30Hz), even for very long traces. Multiple traces from different
ROIs can be overlaid, and can be analyzed from within Flika or ex-
ported for analysis in another program.

2.3. Scripting

An advantage of Flika lies in the notion that visualization of every
step in a series of operations leads to a deeper and more intuitive un-
derstanding of each operation as compared to putting the chain of
operations into a black box and guessing which parameters need to be
changed in order to improve the output. Once a sequence of processing
steps has been performed optimally, a researcher will often want to
apply that same set of steps to many images of the same type. To fa-
cilitate this process, each window retains and displays in the header all
the functions used to create it. These functions can be saved and run
from within Flika's script editor, which includes a Python interpreter
capable of executing any Python script. A script created from a window
can be modified to loop over all the files in a directory and save the
results.

2.4. Plugins

Although Flika's built-in functionality goes a long way towards
analysis of image data, plugins extend this capability. At present, Flika
has plugins for functions including particle tracking, rodent behavior
analysis, myocyte counting, neuron counting, tunneling membrane
nanotube detection, local and global Ca2+ event detection and analysis,
light-sheet image analysis, and more. Flika has a built-in plugin man-
ager that can download and install plugins stored on GitHub or other
online software repositories. In this way, the Flika repository on GitHub
operates analogous to an ‘app store’ for distributing and installing
plugins written by researchers around the world.

3. Imaging methods and materials

3.1. TIRF imaging

Image data used to illustrate processing and analysis by Flika were
generated by TIRF imaging utilizing a custom-built system [14], based
around an Olympus IX50 microscope equipped with an Olympus 60×
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TIRF objective (NA 1.45). Fluorescence Ca2+ images were acquired
with an Evolve EMCCD camera (Photometrics), utilizing 488 nm laser
fluorescence excitation and a 510 long pass emission filter. TIRF images
were captured using 2× 2 pixel binning for a final field of
128×128 pixels (1 pixel= 0.53 μm) at a rate of ~125 frames s−1. To
photorelease i-IP3, UV light from a xenon arc lamp was filtered through
a 350–400 nm bandpass filter and introduced by a UV-reflecting di-
chroic in the light path to uniformly illuminate the field of view. The
amount of i-IP3 released was controlled by varying the flash duration,
set by an electronically controlled shutter (UniBlitz). Image data were
streamed to computer memory using Metamorph v7.7 (Universal Ima-
ging/Molecular Devices) and stored as .stk image stack files on hard
disc for offline import and analysis by Flika.

3.2. Cell culture and loading

HEK-293 cell lines were cultured in EMEM (ATCC #30-2003) sup-
plemented with 10% FBS. Human SH-SY5Y neuroblastoma cells were
cultured as described in [15]. All cell lines were maintained at 37 °C in a
humidified environment composed of 95% air and 5% CO2. Ca2+

imaging data illustrated in Fig. 3 were acquired from SH-SY5Y cells,
loaded with Cal-520, EGTA and caged i-IP3 as described [16]. Ca2+

imaging data illustrated in Fig. 2 and Figs. 5–7 were acquired from
HEK-293 cells loaded as for SH-SY5Y cells with Cal-520 and caged i-IP3,
with EGTA loaded only for the experiment of Fig. 6. For imaging, cells

were cultured on 35-mm glass-bottom dishes in medium containing (in
mM) 135 NaCl, 5.4 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES, and 10 glucose;
pH=7.4, at room temperature.

3.3. Materials

SH-SY5Y cells were obtained from ATCC. HEK-293 wild type cells
were provided by David Yule (University of Rochester), and HEK-293
cells devoid of IP3Rs (triple knock-out, 3KO cells) [17] were purchased
from Kerafast. Membrane-permeable ester of the fluorescent Ca2+ dye
Cal-520/AM was obtained from AAT Bioquest (#21130), of the caged
IP3 analogue ci-IP3/PM [D-2,3,-O-Isopropylidene-6-O-(2-nitro-4,5 di-
methoxy) benzyl-myo-Inositol 1,4,5,-trisphosphate Hexakis (propio-
noxymethyl) ester] from SiChem (cag-iso-2-145-10), and of EGTA/AM
from ThermoFisher #E1219. All other reagents were from Sigma.

4. Applications

We illustrate the utility and power of Flika for processing and
analyzing image stacks generated by fluorescence microscopy of cel-
lular Ca2+ signals by three applications; one implemented as a plugin,
and the others as scripts that utilize built-in functions of Flika.

Fig. 1. Screenshots illustrating the Flika user interface. (A–C) Main Flika window, with pull-down menus showing functions for processing image stacks (A);
performing pixel-level mathematical functions on images and image stacks (B); and for applying spatial and temporal filters (C). (D) Image window, displaying a
selected frame of an image stack. The slider along the bottom allows scrolling through the image stack. A histogram of pixel intensity values is displayed on the right,
together with sliders to adjust the range of intensities displayed and options to determine the display lookup table (monochrome or pseudocolor). (E) Window
displaying a plot of intensity values averaged from the rectangular region of interest in D. The sub-window at the bottom allows the selection of the data range
(frames) to be displayed in the main window, which can also be zoomed to display a range of intensity values. Moving the mouse cursor along the plot corre-
spondingly scrolls the display in the image window. Buttons allow graphed data to be exported to a .txt file or to Excel, and to be transformed in frequency space to
generate a power spectrum.
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4.1. Measuring individual global Ca2+ signals from multiple cells

Global changes in the fluorescence intensity of cells loaded with
Ca2+-indicator dyes or expressing genetically encoded Ca2+-indicators
are commonly used as endpoint parameters of Ca2+ imaging experi-
ments. The identification of cells and processing of image sequences can
be easily accomplished by operations included in the drop-down menus
of Flika's GUI (Fig. 1A–C) and further streamlined by the construction of
short scripts that can be executed by Flika's script editor (Supplemental
file 1).

Fig. 2 illustrates an example of the procedures used to measure
global changes in fluorescence of Cal-520-loaded HEK-293 WT cells
challenged with the muscarinic receptor agonist carbachol (CCH;
100 μM). To identify individual cells in the imaging field, a Gaussian
blurred average across a user-specified number of frames in the movie
(‘z projection’) (Fig. 2A) is first converted to a binary image from which
the ‘generate ROIs’ operation is applied to automatically outline in-
dividual cells (Fig. 2B). Once the user-defined values are optimized for
each parameter of the cell identification process, a simple script can be
employed to automate the operations (Script 1; Supplemental file 1).
Some final manual adjustments to the ROIs may be necessary due to
incomplete separation of individual cells, after which ROIs can be saved
as a .txt file and overlaid onto a movie of Ca2+ fluorescence ratio sig-
nals (Fig. 2C).

For single-wavelength Ca2+-indicators, the background-subtracted
image sequence can be converted to a fluorescence ratio (ΔF/F0) by
dividing the fluorescence of every pixel (F) at each frame by the mean
fluorescence of the same pixel (F0) averaged over a specified number of
initial (baseline) frames before stimulation. The beginning and end of

the image sequences can be adjusted using a trim function, and arti-
facts, for example those arising from solution exchanges or from a flash
of UV light, can be removed by setting the pixel values during these
times equal to the baseline. An example of a short script that can be
executed in the script editor to perform these operations is shown in
Supplemental file 1 (Script 2). The average fluorescence within each
ROI can be plotted over time as traces (ΔF/F0) for all cells (Fig. 2D), and
the values for each ROI at every frame can be exported to an Excel file
for further analysis. Measurements (e.g. peak amplitudes) can also be
directly read off from plotted traces using Flika's ‘measure’ tool and
saved for export as .txt files.

For experiments with dual wavelength Ca2+-indicators such as fura-
2, fluorescence ratio image sequences can be generated using the ‘image
calculator’ function in Flika. If fluorescence from two separate excita-
tion or emission wavelengths are alternately acquired in the same
image sequence, rather than as two image files, a de-interlace operation
can first be applied to separate them into two distinct image sequences
before generating a fluorescence ratio.

4.2. Detecting Ca2+ puffs

Ca2+ puffs are IP3R-mediated, localized, subcellular Ca2+ transients
[8] that can be visualized by wide-field or TIRF microscopy of cells
loaded with Ca2+ indicator dyes [15]. We had previously identified
these events by visual inspection of image stacks (time sequences),
plotting the mean intensity or fluorescence ratio change (ΔF/F0) over
time as a region of interest (ROI) was moved across the cell. This de-
tection method was labor intensive, subjective, did a poor job localizing
events, and often resulted in small events being missed. To circumvent

Fig. 2. Identification and analysis of global
Ca2+ signals from multiple, individual cells.
(A) The panel shows a Gaussian blurred
image of resting fluorescence of Cal-520
loaded HEK-293 WT cells, averaged over
~100 frames prior to stimulation. Imaging
was performed by wide-field epi-
fluorescence microscopy at low (10×)
magnification. Scale bar= 20 μm (B)
Binarized image of A, with yellow circles
illustrating the identification of individual
cells performed by the ‘generate ROIs’ op-
eration in Flika. (C) ROIs overlaid on a
fluorescence ratio (F/F0) image from the
same image sequence as A, at a time when
nearly all cells exhibited a large increase in
cytosolic Ca2+ following stimulation by the
muscarinic receptor agonist carbachol
(CCH). (D) Fluorescence traces (ΔF/F0)
corresponding to the average change in
fluorescence over time from within each
ROI shown in C (x axis labels denote frames,
acquired at 100ms intervals).
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these limitations we developed an algorithm to automate detection of
puffs and serve as an unbiased detector [13]. That algorithm was ori-
ginally implemented as a stand-alone application. We have now en-
hanced the algorithm, which runs as a plugin (‘detect_puffs’) that can be
downloaded and run within Flika using the Plugin Manager.

Fig. 3A diagrams the processing steps within the algorithm. After
importing the ‘raw’ fluorescence image stack, it is spatially and tem-
porally filtered in order to minimize photon shot noise and enhance the
signal-to-noise ratio of the signals of interest. The filtered movie
(Fig. 3B) is then thresholded. Every pixel above a user-defined
threshold is tentatively marked as being part of a Ca2+ release event.
Then, a clustering algorithm [18] groups pixels above the threshold
into puffs by identifying sites with a high density of clustered pixels
relative to closely surrounding pixels and with a relatively large dis-
tance from other high-density sites. The resulting isolated puffs are
depicted in different colors (Fig. 3C). At each step in the algorithm the
researcher can visualize the result and adjust parameters in order to
improve detection and clustering. Once the clustering of pixels into
puffs is complete, a 2D Gaussian curve is fit to every event (Fig. 3D).
The plugin enables interactive visualization, with representations of
puffs displayed alongside their Gaussian fits (Fig. 3D) enabling visual

assessment of the goodness of fit. The peak of the 2D Gaussian (red
arrow) identifies with sub-pixel precision the location of the centroid of
the Ca2+ event. Assuming the spread of the Ca2+ fluorescence signal is
radially symmetric, this will correspond to the ‘center of mass’ of the
ion channels underlying the event.

Once the centroids of each Ca2+ event are determined, they can be
overlaid on an image of average fluorescence intensity to provide a map
of puff sites (Fig. 3E). The criteria for grouping puff centroid localiza-
tions into puff sites is defined by the radius, in pixels, separating puff
centroids from one another and is set by the user within the ‘threshold-
cluster’ window. The grouping of puffs into discrete sites can be vi-
sualized with the ‘Toggle Groups’ function in the ‘Puff Analyzer’
window. As illustrated (Fig. 3E, inset), puffs are not randomly dis-
tributed, but rather tend to occur in tightly packed groups representing
multiple events arising from a stationary cluster of IP3Rs [19,20]. The
algorithm further analyzes the temporal evolution of each puff, to de-
termine peak amplitudes, rise times, and fall times (Fig. 3F). An ROI can
be moved around the movie, updating the trace of intensity. Events
colored red mark those puffs whose centroids were determined to fall
inside the ROI, whereas signals arising from ‘bleed-through’ of fluor-
escence signal from more distant puff sites are colored yellow (Fig. 3G).

Fig. 3. Puff detect plugin. (A) Flow chart of
the algorithm for image processing, event
detection, localization, and analysis. (B)
Example of a single frame from the fluores-
cence image stack after spatial and temporal
filtering. (C) The same frame, after thresh-
olding and cluster analysis to resolve and
segregate discrete Ca2+ events, displayed in
different colors. (D) Snapshot of a single puff
derived from the filtered image stack and
averaged over the duration of the puff,
plotted with fluorescence intensity re-
presented by color and height (left), and the
two-dimensional Gaussian function fitted to
this puff (right). The arrow and red dot mark
the center of the Gaussian. (E) Monochrome
image of the average resting fluorescence of
an SH-SY5Y cell to show the cell outline,
with red dots overlaid to map the centroid
localizations of all observed puffs. White box
shows a magnified region of the cell and
accompanying puff centroid localizations.
(F) The algorithm determines amplitude and
kinetic parameters for each puff event as il-
lustrated: basal resting fluorescence im-
mediately preceding the puff, F0; peak am-
plitude from baseline, ΔF; rise time from
20% to 80% of peak; fall time from 80% to
20% of peak; and full duration at half-max-
imal amplitude. (G) Fluorescence trace
monitored from a region of interest on the
original fluorescence stack. The signal from a
puff whose centroid location lay within this
region is colored in red.
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The user can thus visually inspect puffs, adjust start and end points of
each puff, and discard events that may be artefactual. All parameters
(e.g. amplitudes, kinetics, puff locations in x, y, and time) can be saved
to a .txt file or to an Excel spreadsheet for further analysis, and can also
be saved as a .flika file to be reloaded into the puff detect plugin at a
later time.

4.3. Fluctuation analysis and visualization of local Ca2+ signals

The puff detect plugin (Section 3.1) is highly effective at detecting
and localizing even small Ca2+ transients, provided they arise on a
relatively stable, low level of background fluorescence. However, Ca2+

puffs become obscured by the much greater rise in overall fluorescence
during global Ca2+ signals, and are thus more difficult to visualize and
detect. To circumvent this limitation we developed an image processing
technique of fluctuation analysis that highlights temporally rapid and
spatially confined Ca2+ elevations, even during large amplitude global
spikes. This is implemented as a script that automates a sequence of
processing steps using built-in Flika functions.

4.3.1. Algorithm
Local Ca2+ signals such as puffs extend spatially across one or a few

μm, and persist for tens or a few hundred ms. Thus, the fluorescence
signals of puffs are correlated in space (across several camera pixels)
and time (across several image frames). They thus represent relatively
low frequency spatial and temporal signals, in contrast to ‘white noise’
stochastic fluctuations arising from photon shot noise that are un-
correlated across pixels and sequential frames. Our algorithm (Fig. 4A)
first applies spatial and temporal filters to reduce photon shot noise and
slow changes in baseline fluorescence, and then utilizes a running
boxcar function to calculate, pixel-by-pixel, the variance of the fluor-
escence signal around the mean. Finally, remaining shot noise variance
is subtracted on the basis that this is linearly proportional to the mean
signal, and an image stack representing the standard deviation (SD) of
fluorescence fluctuations (square root of variance) is generated for vi-
sualization.

4.3.2. Shot noise correction
The variance values not only reflect Ca2+-dependent fluctuations in

fluorescence of the indicator, but also the increased photon shot noise
associated with increases in the mean fluorescence intensity during
global responses. To correct for the latter factor, we subtract the noise
variance predicted by the statistics of random shot noise. If measure-
ments were directly in terms of numbers of detected photons, the signal
variance would equal the mean. However, that was not the case for our
records because of factors including the camera conversion factor
(counts per photon) and the filtering applied to the image stack. We
thus empirically determined an appropriate scaling factor by imaging
the fluorescence emitted by a solution of fluorescein as the excitation
intensity was increased (Fig. 4B). As expected, the signal variance
calculated by our algorithm increased proportionally with fluorescence
intensity (red trace, Fig. 4C), and a plot of variance vs. mean intensity
(Fig. 4D) showed a linear relationship. We used the slope of this line to
scale a copy of the original fluorescence image stack, which was then
subtracted from the variance stack to yield a corrected image stack in
which the mean variance was substantially independent of fluorescence
intensity (blue trace, Fig. 4C).

To evaluate this method of photon shot noise correction in the
context of cellular Ca2+ imaging, we processed records from an ex-
periment where cytosolic [Ca2+] is expected to rise in a smoothly
graded manner, without overt temporal fluctuations or spatial in-
homogeneities. We imaged the fluorescence of Cal-520 by TIRF mi-
croscopy in HEK-293 cells in which all IP3 receptor isoforms were
knocked out (HEK-3KO) [17], and evoked an elevation of cytosolic
[Ca2+] by applying a low concentration (500 nM) of ionomycin to
gradually liberate Ca2+ sequestered in intracellular stores while elim-
inating influx of extracellular Ca2+ using a bathing solution containing
no added Ca2+ and 300 μM EGTA. As illustrated in Fig. 5 and Video 1,
this resulted in a roughly 4-fold rise in fluorescence over about 10 s,
followed by a slow decline over about a minute (Fig. 5A, B, upper pa-
nels). During this response there was no appreciable increase in the
mean shot noise-corrected SD (Fig. 5B, lower panel), and no spatial
inhomogeneities were evident in the SD images (Fig. 5A, upper panel).

Fig. 4. Flika script for fluctuation analysis and visualization of transient, local Ca2+ signals. (A) Flow chart of the algorithm. Two Gaussian blurred copies are made of
the original fluorescence image stack. One (a) is used to form a running mean within a time window. The other (b) is used to calculate an image stack of signal
variance within the same running time window. A scaled version of image stack, a, is then subtracted from the variance stack, b, to create a final stack representing
variance in excess of that predicted from photon shot noise. (B) Trace showing fluorescence measured from a small region of interest, as the laser power exciting a
solution of fluorescein was increased in steps. (C) Red trace shows the corresponding increase in variance of the fluorescence from the same region. Blue trace shows
variance after subtraction of predicted photon shot noise. Note that the traces in B and C show only steady state values; transitions between steps have been cropped
out for clarity. (D) Plot of mean signal variance (y axis) vs. mean intensity, derived from the records in B and C.
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4.3.3. Enhanced visualization of local Ca2+ signals
We next evaluated the capability of fluctuation analysis to resolve

local Ca2+ signaling events under ‘easy’ conditions, using weak

photorelease of i-IP3 to evoke Ca2+ puffs on a steady background in a
cell loaded with EGTA to suppress global Ca2+ waves [12]. The upper
panels in Fig. 6A show snapshots of Cal-520 fluorescence imaged by

Fig. 5. Fluctuation analysis of cellular Ca2+ fluores-
cence signals in a situation where cytosolic Ca2+ rises
homogeneously without spatial or abrupt temporal
fluctuations. (A) Top panels show the ‘raw’ fluores-
cence of a HEK-3KO cell loaded with the Ca2+ in-
dicator Cal-520 before (first panel) and at different
times following addition of ionomycin in bath solu-
tion containing no added Ca2+ and 300 μM EGTA.
Each panel is a single frame, acquired at an exposure
time of 8 ms. The lower row of panels show shot
noise-corrected SD fluctuation images at corre-
sponding times. (B) The upper trace shows mean
fluorescence (arbitrary camera units) from the region
of interest marked in the second panels of A. The
lower trace shows the corresponding changes in mean
shot-noise corrected SD signal within the region of
interest, calculated over a 30 frame (240ms) running
window. Roman numerals indicate times at which the
image panels in A were obtained.

Fig. 6. Fluctuation processing enhances the visuali-
zation of local Ca2+ puffs. (A) Upper panels show
raw fluorescence of a HEK-WT cell loaded with Cal-
520, caged i-IP3, and EGTA before (left panel) and
after photorelease of i-IP3 to evoke transient, local
Ca2+ puffs. The lower panels show corresponding
shot noise-corrected SD images. The images illustrate
times when puffs were (ii, iii, iv, v vii) or were not (i,
vi) evident. Roman numerals correspond to the times
marked in B and C. (B) Upper trace shows mean
fluorescence from the large region of interest marked
in A, and the lower trace shows the corresponding
mean SD signal. (C) Traces showing mean (upper)
and SD (lower) signals within a small region of in-
terest (marked in A) centered on a puff site.
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TIRF microscopy in HEK-293 cells at times before and after uncaging i-
IP3. Puffs are evident in several of the panels, but are hard to discern in
the raw fluorescence images. In marked contrast, corresponding SD
images (lower panels, Fig. 6A) clearly highlight numerous local Ca2+

events arising at different sites, demonstrating the utility of this ap-
proach for enhanced visual inspection of subcellular Ca2+ images
(Video 2). This is further illustrated by the traces in Fig. 6B, C. Mea-
surements of fluorescence averaged across a large region of interest
encompassing much of the cell showed barely detectable inflections
during puffs (upper panel, Fig. 6B), whereas these signals were dra-
matically enhanced in the trace showing the average SD signal from the
same region of interest (lower panel, Fig. 6B). Moreover, the SD trace
monitored from a small region centered on a puff site (lower trace,
Fig. 6C) was vastly more effective than the mean fluorescence trace
(upper trace, Fig. 6C) in revealing multiple events arising at this site.

4.3.4. Fluctuation analysis of transient, local Ca2+ signals during global
elevations of cellular Ca2+

Having established that SD fluctuation images are substantially
unaffected by homogeneous global Ca2+ elevations but highlight
transient, local elevations, we then applied fluctuation analysis to look
for local signals that might otherwise be obscured during cell-wide
global Ca2+ elevations evoked by stronger photorelease of i-IP3.

Fig. 7A and Video 3 illustrate TIRF images from HEK cells in which
photorelease of i-IP3 evoked a global elevation in Ca2+, reaching a
maximum fluorescence increase of about 3-times baseline, and rising
and falling over a few tens of seconds. The raw fluorescence increase
appeared relatively uniform across the cell throughout this response
(upper panels, Fig. 7A), and the mean fluorescence averaged across a
large region of interest encompassing a large fraction of the cell (blue
box in second panel of Fig. 7A) showed a smooth rise and fall with

barely discernable superimposed transient fluctuations (upper panel,
Fig. 7B). In contrast, SD images clearly revealed an underlying flurry of
localized, transient Ca2+ events arising at multiple sites (lower panel,
Fig. 7A). Correspondingly, a trace measuring the mean SD signal from
the same region of interest (lower panel, Fig. 7B) showed a large in-
crease in fluctuations that began shortly after the UV flash, reached a
maximum when the global fluorescence was rising most steeply, and
persisting at a lower level for the duration of the response, even when
the global fluorescence had returned almost to baseline. The traces in
Fig. 7C further illustrate respective fluorescence and SD records from a
small region of interest (red box in second panels of Fig. 7A) centered
on a site that showed frequent, maintained local signals. Although
discrete transients are only barely evident during the rising phase of the
raw fluorescence trace from this site (upper panel, Fig. 7C) they are
prominently displayed in the local SD trace (lower panel, Fig. 7C), al-
though activity at individual sites is ‘diluted’ by averaging over a wider
area in the SD trace of Fig. 7B.

4.3.5. Utility of fluctuation processing for studying local Ca2+ signals
We demonstrate derivation of SD image sequences by fluctuation

analysis to provide a powerful aid in the visualization, detection and
localization of transient, local Ca2+ signals. Even very low amplitude
signals can be isolated from the background noise and readily visua-
lized. However, limitations include diminished time resolution owing to
the boxcar temporal windowing, so it is not possible to resolve the ki-
netics of individual events.

An initial conclusion from our results is that cytosolic Ca2+ levels
during global Ca2+ spikes do not rise smoothly and homogeneously, as
has been assumed, for example, in experiments imposing simulated
Ca2+ oscillations (‘Ca2+ clamp’) to study gene activation [21,22]. In-
stead, the cell more closely resembles a bubbling cauldron of Ca2+, in

Fig. 7. Fluctuation analysis aids in detecting and
locating local Ca2+ release events during large global
elevations of cytosolic Ca2+. (A) Upper panels show
raw fluorescence of an HEK WT cell loaded with Cal-
520 and caged i-IP3, but without EGTA, before (left
panel) and after photorelease of a greater amount of
i-IP3 to evoke a cell-wide global elevation of cytosolic
Ca2+. Roman numerals correspond to the times
marked in B and C. The lower panels show corre-
sponding shot-noise corrected SD images. (B) Upper
trace shows mean fluorescence from the large region
of interest marked in A, and the lower trace shows
the corresponding mean SD signal. (D) Traces
showing mean (upper) and SD (lower) signals within
a small region of interest (marked in A) centered on a
site of transient, local Ca2+ activity. (For inter-
pretation of the references to color in this figure, the
reader is referred to the web version of this article.)
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which regions close to puff sites will experience abrupt, large local
Ca2+ transients rather than a smaller, gradual elevation.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.bbamcr.2018.11.012.
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